撥號18861759551

你的位置:首頁 > 技術文章 > 如何測量您的成像系統中的景深

技術文章

如何測量您的成像系統中的景深

技術文章

Gauging Depth of Field in Your Imaging System

Over the years, we have answered countless questions regarding lens performance. Of those questions, none have been more difficult to define than requests for depth of field. The reason for this difficulty has more to do with the vagueness of the question than with the inability to provide a measured or calculated value. Consider for a moment what depth of field ls us. It is the distance by which an object may be shifted before an unacceptable blur is produced. For depth of field to be properly stated, it should contain not only the displacement of an image, but also a specific resolution. The depth of field specification is further complicated by a type of keystoning aberration that often occurs. This result can dramatically affect linear measurements and therefore render depth of field unusable. In this article we will take a closer look at depth of field calculations and compare them to physical measurements using the DOF 1-40 depth of field gauge. The gauge, as we will see later, offers a unique look at what depth of field really means and how we as system designers may wish to quantify this parameter. A simple geometric approximation for depth of field is shown in Figure 1.0. The linear blur (required resolution) Bp, Bm and Bf can be expressed in terms of angular blur by the following equation.

Figure 1

 

Using similar triangles, a relationship can now be made between angular blur and the focus point,

where λ is the aperture of the lens. Solving for δplus and δmin,

The derivation above is very specific to the intended resolution. However, many theoretical derivations of depth of field often assume the lens resolution to be nearly diffraction limited. The most popular of these derivations are based on microscope applications. A typical example for the total depth of field (dplus + dmin) is shown below.

Where λ is the wavelength and NA equals the numerical aperture of the lens.

In order to study depth of field we have put together a simple macro system consisting of a 25mm fixed focal length lens, 8mm spacer and Sony XC-75 monochrome CCD video camera. The system was chosen not for its performance but rather for its common real world implementation. Measurements were performed using the DOF 1-40 target. The target allows us to measure depth of field at either 1, 10, 20 or 40 lp/mm over a maximum depth of 50mm. The flat field resolution of this system is approximay 15 lp/mm at 0.3X primary magnification. For purposes of our experiment, a blur spot resolution of 0.1 mm or 10 lp/mm was chosen. Depth of field measurements were taken at three aperture settings corresponding to f/2, f/4, and f/8. An important point should be noted about aperture settings. The f-number shown on most fixed focal length lenses is calculated with the object at infinity. As a result, we have adjusted our NA and therefore our aperture values for a 95mm working distance.

The values below highlight a number of points to consider. In general our calculated and measured delta d are fairly close. However, the displacement of the image due to defocus aberrations was not predicted by our calculations. This type of displacement error could certainly be problematic if the system contained an auto iris. If we compare our measured results to the delta-theory, we notice a significant variation. As we mentioned earlier, this variation is due to a false assumption concerning system resolution.

Another property that should be noted in our DOF 1-40 observations is the non-uniform magnification seen through the depth of field range. This is a very common problem in most lenses and, as we stated earlier, can yield significant errors if measurements are made throughout the full depth of field range. Edmund Optics provides several ecentric options to correct for this type of error.

In the end, it is the total performance of an optical system that counts. As a full service supplier and manufacturer of optics, illumination, CCD cameras, monitors, mounting, and electronic imaging related products, Edmund Optics has the knowledge and resources to look at your application as a total system. In fact, innovative tools such as the DOF 1-40 have come about from our own in-house need to quantify system performance. So if you are looking for individual components that can be integrated into your system or starting from scratch, our engineers are ready to help.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
国产精品午夜在线播放a| 亚洲中文字幕久久精品无码APP| 国产精品亚洲二区在线观看| 精品国产91久久久久久久a| 国产成人综合久久精品亚洲| 欧洲精品无码成人久久久| 国产成人啪精品视频免费网| 91精品国产福利在线导航| 999精品久久久中文字幕蜜桃| 999精品视频在线观看热6| 色妞WWW精品免费视频| 亚洲第一永久AV网站久久精品男人的天堂AV | 99在线精品一区二区三区| 亚洲av午夜国产精品无码中文字| 免费看一级毛片在线观看精品视频| 国内精品久久久人妻中文字幕| 91热成人精品国产免费| 精品国产一区二区三区色欲| 国语自产偷拍精品视频偷| 国产A√精品区二区三区四区| 无码精品国产VA在线观看| 大香视频伊人精品75| 99精品国产高清一区二区三区 | 国产精品三级av及在线观看| 国产精品1024视频| 乱色精品无码一区二区国产盗 | 亚洲精品无码精品mV在线观看| 国产成人精品日本亚洲18图| 精品人妻码一区二区三区| 国产成人亚洲精品| 亚洲国产高清精品线久久| 无码精品久久久久久人妻中字| 97超碰精品成人国产| 精品一区二区三区免费观看 | 国产精品视频免费观看| 国产精品九九久久免费视频| 亚洲精品影院久久久久久| 国产精品免费在线播放| 538精品视频在线观看| 国产麻豆精品在线观看| 久久精品一区二区东京热|