日韩欧美国产一区二区_国产精品国模大尺度视频_在线中文一区_久久综合九色99

撥號18861759551

你的位置:首頁 > 技術文章 > 調制傳遞函數簡介

技術文章

調制傳遞函數簡介

技術文章

Introduction to Modulation Transfer Function

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF). MTF is used for components as simple as a spherical singlet lens to those as complex as a multi-element ecentric imaging lens assembly. In order to understand the significance of MTF, consider some general principles and practical examples for defining MTF including its components, importance, and characterization.

 

THE COMPONENTS OF MTF

To properly define the modulation transfer function, it is necessary to first define two terms required to truly characterize image performance: resolution and contrast.

 

Resolution

Resolution is an imaging system's ability to distinguish object detail. It is often expressed in terms of line-pairs per millimeter (where a line-pair is a sequence of one black line and one white line). This measure of line-pairs per millimeter (lp/mm) is also known as frequency. The inverse of the frequency yields the spacing in millimeters between two resolved lines. Bar targets with a series of equally spaced, alternating white and black bars (i.e. a 1951 USAF target or a Ronchi ruling) are ideal for testing system performance. For a more detailed explanation of test targets, view Choosing the Correct Test Target. For all imaging optics, when imaging such a pattern, perfect line edges become blurred to a degree (Figure 1). High-resolution images are those which exhibit a large amount of detail as a result of minimal blurring. Conversely, low-resolution images lack fine detail.

Figure 1: Perfect Line Edges Before (Left) and After (Right) Passing through a Low Resolution Imaging Lens

 

A practical way of understanding line-pairs is to think of them as pixels on a camera sensor, where a single line-pair corresponds to two pixels (Figure 2). Two camera sensor pixels are needed for each line-pair of resolution: one pixel is dedicated to the red line and the other to the blank space between pixels. Using the aforementioned metaphor, image resolution of the camera can now be specified as equal to twice its pixel size.

Figure 2: Imaging Scenarios Where (a) the Line-Pair is NOT Resolved and (b) the Line-Pair is Resolved

 

Correspondingly, object resolution is calculated using the camera resolution and the primary magnification (PMAG) of the imaging lens (Equations 1 – 2). It is important to note that these equations assume the imaging lens contributes no resolution loss.

 

Contrast/Modulation

Consider normalizing the intensity of a bar target by assigning a maximum value to the white bars and zero value to the black bars. Plotting these values results in a square wave, from which the notion of contrast can be more easily seen (Figure 3). Mathematically, contrast is calculated with Equation 3:

Figure 3: Contrast Expressed as a Square Wave

 

When this same principle is applied to the imaging example in Figure 1, the intensity pattern before and after imaging can be seen (Figure 4). Contrast or modulation can then be defined as how faithfully the minimum and maximum intensity values are transferred from object plane to image plane.

 

To understand the relation between contrast and image quality, consider an imaging lens with the same resolution as the one in Figure 1 and Figure 4, but used to image an object with a greater line-pair frequency. Figure 5 illustrates that as the spatial frequency of the lines increases, the contrast of the image decreases. This effect is always present when working with imaging lenses of the same resolution. For the image to appear defined, black must be truly black and white truly white, with a minimal amount of grayscale between.

Figure 4: Contrast of a Bar Target and Its Image

Figure 5: Contrast Comparison at Object and Image Planes

 

In imaging applications, the imaging lens, camera sensor, and illumination play key roles in determining the resulting image contrast. The lens contrast is typically defined in terms of the percentage of the object contrast that is reproduced. The sensor's ability to reproduce contrast is usually specified in terms of decibels (dB) in analog cameras and bits in digital cameras.

 

UNDERSTANDING MTF

Now that the components of the modulation transfer function (MTF), resolution and contrast/modulation, are defined, consider MTF itself. The MTF of a lens, as the name implies, is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification. As line spacing decreases (i.e. the frequency increases) on the test target, it becomes increasingly difficult for the lens to efficiently transfer this decrease in contrast; as result, MTF decreases (Figure 6).

Figure 6: MTF for an Aberration-Free Lens with a Rectangular Aperture

 

For an aberration-free image with a circular pupil, MTF is given by Equation 4, where MTF is a function of spatial resolution (ξ), which refers to the smallest line-pair the system can resolve. The cut-off frequency (ξc) is given by Equation 6.

 

Figure 6 plots the MTF of an aberration-free image with a rectangular pupil. As can be expected, the MTF decreases as the spatial resolution increases. It is important to note that these cases are idealized and that no actual system is compley aberration-free.

THE IMPORTANCE OF MTF

In traditional system integration (and less crucial applications), the system's performance is roughly estimated using the principle of the weakest link. The principle of the weakest link proposes that a system's resolution is solely limited by the component with the lowest resolution. Although this approach is very useful for quick estimations, it is actually flawed because every component within the system contributes error to the image, yielding poorer image quality than the weakest link alone.

 

Every component within a system has an associated modulation transfer function (MTF) and, as a result, contributes to the overall MTF of the system. This includes the imaging lens, camera sensor, image capture boards, and video cables, for instance. The resulting MTF of the system is the product of all the MTF curves of its components (Figure 7). For instance, a 25mm fixed focal length lens and a 25mm double gauss lens can be compared by evaluating the resulting system performance of both lenses with a Sony monochrome camera. By analyzing the system MTF curve, it is straightforward to determine which combination will yield sufficient performance. In some metrology applications, for example, a certain amount of contrast is required for accurate image edge detection. If the minimum contrast needs to be 35% and the image resolution required is 30 lp/mm, then the 25mm double gauss lens is the best choice.

 

MTF is one of the best tools available to quantify the overall imaging performance of a system in terms of resolution and contrast. As a result, knowing the MTF curves of each imaging lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Figure 7: System MTF is the Product of the MTF of Individual Component: Lens MTF x Camera MTF = System MTF

 

CHARACTERIZATION OF MTF

Determining Real-World MTF

A theoretical modulation transfer function (MTF) curve can be generated from the optical prescription of any lens. Although this can be helpful, it does not indicate the actual, real-world performance of the lens after accounting for manufacturing tolerances. Manufacturing tolerances always introduce some performance loss to the original optical design since factors such as geometry and coating deviate slightly from an ideal lens or lens system. For this reason, in our manufacturing sites, Edmund Optics® invests in optical test and measurement equipment for quantifying MTF. This MTF test and measurement equipment allows for characterization of the actual performance of both designed lenses and commercial lenses (whose optical prescription is not available to the public). As a result, precise integration - previously limited to lenses with known prescriptions - can now include commercial lenses.

 

Reading MTF Graphs/Data

Reading Modulation Transfer Function Graphs/Data

A greater area under the MTF curve does not always indicate the optimal choice. A designer should decide based on the resolution of the application at hand. As previously discussed, an MTF graph plots the percentage of transferred contrast versus the frequency (cycles/mm) of the lines. A few things should be noted about the MTF curves offered by Edmund Optics®:

 

Each MTF curve is calculated for a single point in space. Typical field points include on-axis, 70% field, and full-field. 70% is a common reference point because it captures approximay 50% of the total imaging area.

Off-axis MTF data is calculated for both tangential and sagittal cases (denoted by T and S, respectively). Occasionally an average of the two is presented rather than the two individual curves.

MTF curves are dependent on several factors, such as system conjugates, wavebands, and f/#. An MTF curve is calculated at specified values of each; therefore, it is important to review these factors before determining whether a component will work for a certain application.

The spatial frequency is expressed in terms of cycles (or line-pairs) per millimeter. The inverse of this frequency yields the spacing of a line-pair (a cycle of one black bar and one white bar) in millimeters.

The nominal MTF curve is generated using the standard prescription information available in optical design programs. This prescription information can also be found on our global website, in our print catalogs, and in our lens catalogs supplied to Zemax®. The nominal MTF represents the best-case scenario and does not take into account manufacturing tolerances.

Conceptually, MTF can be difficult to grasp. Perhaps the easiest way to understand this notion of transferring contrast from object to image plane is by examining a real-world example. Figures 8 - 12 compare MTF curves and images for two 25mm fixed focal length imaging lenses: #54-855 Finite Conjugate Micro-Video Lens and #59-871 Compact Fixed Focal Length Lens. Figure 8 shows polychromatic diffraction MTF for these two lenses. Depending upon the testing conditions, both lenses can yield equivalent performance. In this particular example, both are trying to resolve group 2, elements 5 -6 (indicated by the red boxes in Figure 10) and group 3, elements 5 – 6 (indicated by the blue boxes in Figure 10) on a 1951 USAF resolution target (Figure 9). In terms of actual object size, group 3, elements 5 – 6 represent 6.35 – 7.13lp/mm (14.03 - 15.75μm) and group 3, elements 5 – 6 represent 12.70 – 14.25lp/mm (7.02 - 7.87μm). For an easy way to calculate resolution given element and group numbers, use our 1951 USAF Resolution EO Tech Tool.

 

Under the same testing parameters, it is clear to see that #59-871 (with a better MTF curve) yields better imaging performance compared to #54-855 (Figures 11 – 12). In this real-world example with these particular 1951 USAF elements, a higher modulation value at higher spatial frequencies corresponds to a clearer image; however, this is not always the case. Some lenses are designed to be able to very accuray resolve lower spatial frequencies, and have a very low cut-off frequency (i.e. they cannot resolve higher spatial frequencies). Had the target been group -1, elements 5-6, the two lenses would have produced much more similar images given their modulation values at lower frequencies.

Figure 8: Comparison of Polychromatic Diffraction MTF for #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right)

Figure 9: 1951 USAF Resolution Target

 

Figure 10: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 (Red Boxes) and Group 3, Elements 5 – 6 (Blue Boxes) on a 1951 USAF Resolution Target

 

Figure 11: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 on a 1951 USAF Resolution Target

 

Figure 12: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 3, Elements 5 – 6 on a 1951 USAF Resolution Target

 

Modulation transfer function (MTF) is one of the most important parameters by which image quality is measured. Optical designers and engineers frequently refer to MTF data, especially in applications where success or failure is contingent on how accuray a particular object is imaged. To truly grasp MTF, it is necessary to first understand the ideas of resolution and contrast, as well as how an object's image is transferred from object to image plane. While initially daunting, understanding and eventually interpreting MTF data is a very powerful tool for any optical designer. With knowledge and experience, MTF can make selecting the appropriate lens a far easier endeavor - despite the multitude of offerings.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
日韩欧美国产一区二区_国产精品国模大尺度视频_在线中文一区_久久综合九色99
亚洲网站啪啪| 国产一区二区三区久久| 欧美高清在线视频| 精品91免费| 你懂的国产精品| 亚洲国产综合在线| 欧美精品九九| 亚洲午夜性刺激影院| 国产精品午夜av在线| 欧美在线观看视频一区二区| 国产亚洲欧美另类一区二区三区| 久久精品国产精品亚洲精品| 国产中文一区二区| 巨乳诱惑日韩免费av| 亚洲欧洲日产国产网站| 欧美日韩一区自拍| 亚洲免费视频网站| 伊人久久综合97精品| 欧美va亚洲va国产综合| 99精品国产高清一区二区| 欧美视频一区二区三区| 久久狠狠亚洲综合| 日韩一级大片在线| 国产午夜精品美女毛片视频| 麻豆国产精品一区二区三区| 最新国产精品拍自在线播放| 国产精品手机视频| 免费观看亚洲视频大全| 亚洲一区欧美激情| 亚洲成人直播| 国产精品久久久久高潮| 美国三级日本三级久久99| 亚洲视频一区| 亚洲大胆美女视频| 国产日韩欧美二区| 欧美日韩一区二区在线观看| 久久琪琪电影院| 亚洲在线视频免费观看| 亚洲片在线观看| 国产婷婷精品| 欧美午夜不卡在线观看免费 | 亚洲一区二区精品| 国产综合久久久久久鬼色| 欧美精品在线免费观看| 久久久水蜜桃av免费网站| 亚洲自拍偷拍一区| 亚洲毛片在线免费观看| 黄色一区三区| 国产午夜精品全部视频播放| 欧美视频中文一区二区三区在线观看| 久久久久综合网| 亚洲淫片在线视频| 日韩亚洲一区在线播放| 亚洲高清中文字幕| 国产真实乱偷精品视频免| 国产精品日日摸夜夜添夜夜av | 校园春色国产精品| 亚洲午夜电影在线观看| 一本色道久久综合亚洲精品小说| 亚洲第一成人在线| 狠狠色香婷婷久久亚洲精品| 国产手机视频一区二区| 国产日韩欧美精品一区| 国产精品欧美日韩久久| 国产精品久久久久久久一区探花 | 国产精品白丝jk黑袜喷水| 欧美巨乳在线观看| 欧美理论片在线观看| 欧美国产在线观看| 欧美激情aaaa| 欧美日韩精品一区二区| 欧美成人官网二区| 欧美高清在线播放| 欧美日一区二区三区在线观看国产免| 欧美精品1区| 欧美日本一道本| 国产精品草草| 国产欧美日韩一区二区三区在线观看| 国产精品亚洲欧美| 香蕉成人啪国产精品视频综合网| 一区二区毛片| 羞羞视频在线观看欧美| 久久久亚洲高清| 欧美激情按摩| 国产精品成人观看视频免费| 国产欧美精品va在线观看| 狠狠色丁香久久婷婷综合丁香| 亚洲福利av| 一本色道久久综合狠狠躁篇的优点| aa国产精品| 久久国产一区二区| 欧美精品尤物在线| 国产麻豆视频精品| 亚洲人成啪啪网站| 亚洲欧美国产视频| 免费不卡在线观看| 欧美日韩在线亚洲一区蜜芽| 国产自产v一区二区三区c| 国产一二精品视频| 激情视频亚洲| 亚洲国产岛国毛片在线| 91久久国产精品91久久性色| 国内一区二区三区| 亚洲国产精品一区制服丝袜| 美女国产一区| 乱中年女人伦av一区二区| 你懂的国产精品永久在线| 欧美黄污视频| 国产精品久线观看视频| 狠狠色综合网| 亚洲美女毛片| 香蕉成人伊视频在线观看| 久久久国产精品亚洲一区| 欧美11—12娇小xxxx| 欧美国产乱视频| 国产精品丝袜xxxxxxx| 激情五月综合色婷婷一区二区| 在线观看的日韩av| 免费亚洲电影在线| 国产精品v片在线观看不卡| 国产精品视频一二三| 亚洲国产精品va| 亚洲综合99| 欧美成人一二三| 亚洲午夜小视频| 麻豆亚洲精品| 国产精品羞羞答答xxdd| 亚洲人成网站色ww在线| 性色av一区二区三区在线观看 | 国内外成人在线| 夜夜嗨av一区二区三区| 欧美在线一二三| 欧美日韩在线高清| 在线观看日韩av| 欧美日韩在线另类| 亚洲第一福利视频| 午夜亚洲福利| 欧美亚洲第一页| 亚洲黄色影院| 久久久久久久久一区二区| 国产精品护士白丝一区av| 亚洲国产精品高清久久久| 欧美资源在线| 国产精品天天摸av网| 99ri日韩精品视频| 欧美成年人视频| 久久精品免费观看| 国产精品久久久久影院亚瑟 | 亚洲午夜视频在线观看| 老司机精品久久| 国产欧美日韩精品专区| 亚洲视频axxx| 欧美另类99xxxxx| 亚洲高清免费| 欧美成人精品不卡视频在线观看| 好吊视频一区二区三区四区| 午夜在线a亚洲v天堂网2018| 欧美午夜激情在线| 亚洲图片欧美日产| 欧美日韩国产成人在线观看| 亚洲激情社区| 欧美激情第二页| 亚洲精品国产精品乱码不99按摩| 老司机午夜免费精品视频| 国产精品视频在线观看| 宅男66日本亚洲欧美视频| 欧美日韩极品在线观看一区| 亚洲精品中文字幕在线| 欧美韩国一区| 99精品国产在热久久婷婷| 欧美精品三级| 一区二区三区 在线观看视频| 欧美激情偷拍| 99精品国产高清一区二区| 欧美日韩伦理在线免费| 雨宫琴音一区二区在线| 蜜臀久久99精品久久久画质超高清| 伊人久久婷婷| 欧美精品在线播放| 一区二区冒白浆视频| 国产精品二区二区三区| 亚洲综合第一页| 国产在线精品一区二区中文| 久久综合给合| 亚洲国产一区二区三区在线播| 久久一综合视频| 亚洲福利电影| 欧美日韩一区自拍| 亚洲香蕉视频| 国产精品中文字幕欧美| 久久久精品免费视频| 亚洲国产乱码最新视频| 欧美区亚洲区| 欧美在线视频免费观看| 136国产福利精品导航网址应用 | 久久精品国产成人| 在线播放中文一区| 欧美日本亚洲视频| 欧美一区二区三区四区在线观看 | 欧美在线一级va免费观看|