撥號18861759551

你的位置:首頁 > 技術(shù)文章 > 單色光學(xué)像差

技術(shù)文章

單色光學(xué)像差

技術(shù)文章

Chromatic and Monochromatic Optical Aberrations

Designing optical systems is never an easy task; even perfectly designed systems contain optical aberrations. The trick is in understanding and correcting for these optical aberrations in order to create an optimal system. To do so, consider the types of aberrations present in optical systems.

 

Optical aberrations are deviations from a perfect, mathematical model. It is important to note that they are not caused by any physical, optical, or mechanical flaws. Rather, they can be caused by the lens shape itself, or placement of optical elements within a system, due to the wave nature of light. Optical systems are typically designed using first order or paraxial optics in order to calculate image size and location. Paraxial optics does not take into account aberrations; it treats light as a ray, and therefore omits the wave phenomena that cause aberrations.

 

Optical aberrations are named and characterized in several different ways. For simplicity, consider aberrations divided into two groups: chromatic aberrations (present when using more than one wavelength of light) and monochromatic aberrations (present with a single wavelength of light).

 

CHROMATIC ABERRATIONS

Chromatic aberrations are further classified into two types: transverse and longitudinal. Longitudinal can then be either primary or secondary longitudinal chromatic aberration.

 

Transverse chromatic aberration (TCA) occurs when the size of the image changes with wavelength. In other words, when white light is used, red, yellow, and blue wavelengths focus at separate points in a vertical plane (Figure 1). In optical terms, 656.3nm (red) is referred to as C light, 587.6nm (yellow) as d light, and 486.1nm (blue) as F light. These designations arise from their hydrogen emission lines for C & F lights and helium for d light.

 

Longitudinal chromatic aberration (LCA) occurs when different wavelengths focus at different points along the horizontal optical axis as a result of dispersion properties of the glass. The refractive index of a glass is wavelength dependent, so it has a slightly different effect on where each wavelength of light focuses, resulting in separate focal points for F, d, and C light along a horizontal plane (Figure 2).

Figure 1: Transverse Chromatic Aberration of a Single Positive Lens

Figure 2: Longitudinal Chromatic Aberration of a Single Positive Lens

Figure 3: Achromatic Doublet Lens Correcting for Primary Longitudinal Chromatic Aberration

Primary LCA correction is usually performed using an achromatic doublet lens, which is made of positive and negative lens elements of different refractive indices (Figure 3). This type of correction forces F and C light to focus at the same place, but has little effect on the location of the d light focus, which leaves residual chromatic aberration.

 

In order to correct this residual LCA, a more complex lens or lens system must be used to shift the focus of d light to be at the same axial location as the F and C focus. This type of correction is usually achieved by using an apochromatic lens, which is corrected such that three wavelengths focus at the same point, or a superachromatic lens, which is corrected such that four wavelengths focus at the same point. Figures 4a – 4d show a comparison in focus shift between the aforementioned types of lens systems.

Figure 4a: Focus Shift Illustration of No Aberration Correction with a Singlet Lens

Figure 4b: Focus Shift Illustration of Primary Longitudinal Chromatic Aberration Correction with an Achromatic Lens

Figure 4c: Focus Shift Illustration of Secondary Longitudinal Chromatic Aberration Correction with an Apochromatic Lens

Figure 4d: Focus Shift Illustration of Secondary Longitudinal Chromatic Aberration Correction with a Superachromatic Lens

 

MONOCHROMATIC ABERRATIONS

By far, monochromatic aberrations outnumber chromatic aberrations. Therefore, they are labeled with wavefront coefficients in addition to names. For example, spherical aberration has a wavefront coefficient of W040. This wavefront coefficient arises from the mathematical summation that gives the actual difference between the perfect and aberrated wavefronts:

In Equation 1, Wklm is the wavefront coefficient, H is the normalized image height, ρ is the location in the pupil, and θ is the angle between the two, which arrives due to the dot product of the two vectors. Once the wavefront coefficient is known, the order number can be determined by adding l and k. However, this will always create an even number. Since optical aberrations are often referred to as first, third, fifth order, etc, if k + l = 2, it is a first order aberration, if k + l = 4, it is a third order, etc. Generally, only first and third order aberrations are necessary for system analysis. Higher order aberrations exist, but are not commonly corrected in optical systems because of the complication this adds to the system. Usually, the complexity of correcting higher order aberrations is not worth the image quality improvement. Common third order monochromatic aberrations and their corresponding coefficients and equations are listed in table 1.

Aberration Name

Wavefront Coefficient

Equation

Tilt

W111

W111Hρcos(θ)

Defocus

W020

W020ρ2

Spherical

W040

W040ρ4

Coma

W131

W131Hρ3cos(θ)

Astigmatism

W222

W222H2ρ2cos2(θ)

Field Curvature

W220

W220H2ρ2

Disortion

W311

W311H3ρcos(θ)

Table 1: Common Third Order Optical Aberrations

 

Optical and imaging systems can contain multiple combinations of optical aberrations. These optical aberrations can be classified into either chromatic or monochromatic. Aberrations will always degrade image quality, and a very large portion of optical design is focused on recognizing and reducing these aberrations. The first step in correcting for aberrations is to understand the different types and how they affect system performance. With this knowledge, one can then design the best system possible. For in-depth information on identifying and correcting for chromatic and monochromatic aberrations, view Comparison of Optical Aberrations.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
一本一道久久a久久精品综合 | 国产精品 猎奇 另类视频| 九九在线精品视频专区| 久久夜色精品国产噜噜麻豆| 日韩精品无码一区二区视频| 精品人妻少妇一区二区三区不卡| 国产成人精品午夜福利| 国产精品久久久久国产精品| 久久香蕉超碰97国产精品| CAOPORM国产精品视频免费| 2021国内久久精品| 亚洲AV永久无码精品一百度影院| 国产在线国偷精品产拍| 国产精品毛片久久久久久久 | 精品国产综合成人亚洲区| 国产精品美女久久久网站| 91久久精品国产免费一区 | 国产成人精品无码免费看| 国产精品毛片无遮挡高清| 久久精品国产亚洲av麻豆蜜芽 | 四虎国产精品免费永久在线| 国产色无码精品视频国产| 亚洲91精品麻豆国产系列在线| 久久99精品综合国产首页| 亚洲精品尤物yw在线影院| 99er热精品视频| 91久久精品电影| 久久9精品久久久| 中文精品99久久国产 | 久久久久久精品免费免费自慰| 亚洲国产精品无码专区影院| 国产精品女同一区二区久久| 国产精品久久精品视| 人妻熟妇乱又伦精品HD| 91精品视频在线| 性色精品视频网站在线观看 | 99re视频热这里只有精品7 | 精品欧洲videos| 亚洲av永久中文无码精品| 国产精品久久成人影院| 91精品久久国产青草|