日韩欧美国产一区二区_国产精品国模大尺度视频_在线中文一区_久久综合九色99

撥號(hào)18861759551

你的位置:首頁 > 技術(shù)文章 > 紅外(IR)應(yīng)用的正確材料

技術(shù)文章

紅外(IR)應(yīng)用的正確材料

技術(shù)文章

The Correct Material for Infrared (IR) Applications

Introduction to Infrared (IR)

Infrared (IR) radiation is characterized by wavelengths ranging from 0.750 -1000μm (750 - 1000000nm). Due to limitations on detector range, IR radiation is often divided into three smaller regions: 0.750 - 3μm, 3 - 30μm, and 30 - 1000μm – defined as near-infrared (NIR), mid-wave infrared (MWIR), and far-infrared (FIR), respectively (Figure 1). Infrared products are used extensively in a variety of applications ranging from the detection of IR signals in thermal imaging to element identification in IR spectroscopy. As the need for IR applications grows and technology advances, manufacturers have begun to utilize IR materials in the design of plano-optics (i.e. windows, mirrors, polarizers, beamsplitters, prisms), spherical lenses (i.e. plano-concave/convex, double-concave/convex, meniscus), aspheric lenses (parabolic, hyperbolic, hybrid), achromatic lenses, and assemblies (i.e. imaging lenses, beam expanders, eyepieces, objectives). These IR materials, or substrates, vary in their physical characteristics. As a result, knowing the benefits of each allows one to select the correct material for any IR application.

 

Figure 1: Electromagnetic Spectrum

 

The Importance of Using the Correct Material

Since infrared light is comprised of longer wavelengths than visible light, the two regions behave differently when propagating through the same optical medium. Some materials can be used for either IR or visible applications, most notably fused silica, BK7 and sapphire; however, the performance of an optical system can be optimized by using materials better suited to the task at hand. To understand this concept, consider transmission, index of refraction, dispersion and gradient index. For more in-depth information on specifications and properties, view Optical Glass.

 

Transmission

The foremost attribute defining any material is transmission. Transmission is a measure of throughput and is given as a percentage of the incident light. IR materials are usually opaque in the visible while visible materials are usually opaque in the IR; in other words, they exhibit nearly 0% transmission in those wavelength regions. For example, consider silicon, which transmits IR but not visible light (Figure 2).

Figure 2: Uncoated Silicon Transmission Curve

 

Index of Refraction

While it is mainly transmission that classifies a material as either an IR or visible material, another important attribute is index of refraction (nd). Index of refraction is the ratio of the speed of light in a vacuum to the speed of light within a given material. It is a means of quantifying the effect of light "slowing down" as it enters a high index medium from a low index medium. It is also indicative of how much light is refracted when obliquely encountering a surface, where more light is refracted as nd increases (Figure 3).

Figure 3: Light Refraction from a Low Index to a High Index Medium

 

The index of refraction ranges from approximay 1.45 - 2 for visible materials and 1.38 - 4 for IR materials. In many cases, index of refraction and density share a positive correlation, meaning IR materials can be heavier than visible materials; however, a higher index of refraction also implies diffraction-limited performance can be achieved with fewer lens elements – reducing overall system weight and cost.

 

Dispersion

Dispersion is a measure of how much the index of refraction of a material changes with respect to wavelength. It also determines the separation of wavelengths known as chromatic aberration. Quantitatively, dispersion is inversely given by the Abbe number (vd), which is a function of the refractive index of a material at the f (486.1nm), d (587.6nm), and c (656.3nm) wavelengths (Equation 1).

 

Materials with an Abbe number greater than 55 (less dispersive) are considered crown materials and those with an Abbe number less than 50 (more dispersive) are considered flint materials. The Abbe number for visible materials ranges from 20 - 80, while the Abbe number for IR materials ranges from 20 - 1000.

 

Index Gradient

The index of refraction of a medium varies as the temperature changes. This index gradient (dn/dT) can be problematic when operating in unstable environments, especially if the system is designed to operate for one value of n. Unfortunay, IR materials are typically characterized by larger values of dn/dT than visible materials (compare N-BK7, which can be used in the visible, to germanium, which only transmits in the IR in the Key Material Attributes table in Infrared Comparison).

 

How to Choose the Correct Material

When choosing the correct IR material, there are three simple points to consider. Though the selection process is easier because there is a much smaller practical selection of materials for use in the infrared compared to the visible, these materials also tend to be more expensive due to fabrication and material costs.

 

Thermal Properties – Frequently, optical materials are placed in environments where they are subjected to varying temperatures. Additionally, a common concern with IR applications is their tendency to produce a large amount of heat. A material's index gradient and coefficient of thermal expansion (CTE) should be evaluated to ensure the user is met with the desired performance. CTE is the rate at which a material expands or contracts given a change in temperature. For example, germanium has a very high index gradient, possibly degrading optical performance if used in a thermally volatile setting.

Transmission – Different applications operate within different regions of the IR spectrum. Certain IR substrates perform better depending on the wavelength at hand (Figure 4). For example, if the system is meant to operate in the MWIR, germanium is a better choice than sapphire, which works well in the NIR.

Index of Refraction – IR materials vary in terms of index of refraction far more than visible materials do, allowing for more variation in system design. Unlike visible materials (such as N-BK7) that work well throughout the entire visible spectrum, IR materials are often limited to a small band within the IR spectrum, especially when anti-reflection coatings are applied.

Figure 4: Infrared Substrate Comparison (Wavelength Range for N-BK7 is Representative for the Majority of Substrates Used for Visible Wavelengths Such as B270, N-SF11, BOROFLOAT®, etc.)

 

Infrared Comparison

Although dozens of IR materials exist, only a handful is predominantly used within the optics, imaging, and photonics industries to manufacture off-the-shelf components. Calcium fluoride, fused silica, germanium, magnesium fluoride, N-BK7, potassium bromide, sapphire, silicon, sodium chloride, zinc selenide and zinc sulfide each have their own unique attributes that distinguish them from each other, in addition to making them suitable for specific applications. The following tables provide a comparison of some commonly used substrates.

 

Key IR Material Attributes

Name

Index of Refraction (nd)

Abbe Number (vd)

Density 
(g/cm3)

CTE 
(x 10-6/°C)

dn/dT 
(x 10-6/°C)

Knoop Hardness

Calcium Fluoride (CaF2)

1.434

95.1

3.18

18.85

-10.6

158.3

Fused Silica (FS)

1.458

67.7

2.2

0.55

11.9

500

Germanium (Ge)

4.003

N/A

5.33

6.1

396

780

Magnesium Fluoride (MgF2)

1.413

106.2

3.18

13.7

1.7

415

N-BK7

1.517

64.2

2.46

7.1

2.4

610

Potassium Bromide (KBr)

1.527

33.6

2.75

43

-40.8

7

Sapphire

1.768

72.2

3.97

5.3

13.1

2200

Silicon (Si)

3.422

N/A

2.33

2.55

1.60

1150

Sodium Chloride (NaCl)

1.491

42.9

2.17

44

-40.8

18.2

Zinc Selenide (ZnSe)

2.403

N/A

5.27

7.1

61

120

Zinc Sulfide (ZnS)

2.631

N/A

5.27

7.6

38.7

120

 

IR Material Comparison

Name

Properties / Typical Applications

Calcium Fluoride (CaF2)

Low Absorption, High Refractive Index Homogeneity

Used in Spectroscopy, Semiconductor Processing, Cooled Thermal Imaging

Fused Silica (FS)

Low CTE and Excellent Transmission in IR

Used in Interferometry, Laser Instrumentation, Spectroscopy

Germanium (Ge)

High nd, High Knoop Hardness, Excellent MWIR to FIR Transmission

Used in Thermal Imaging, Rugged IR Imaging

Magnesium Fluoride (MgF2)

High CTE, Low Index of Refraction, Good Transmission from Visible to MWIR

Used in Windows, Lenses, and Polarizers that Do Not Require Anti-Reflection Coatings

N-BK7

Low-Cost Material, Works Well in Visible and NIR Applications

Used in Machine Vision, Microscopy, Industrial Applications

Potassium Bromide (KBr)

Good Resistance to Mechanical Shock, Water Soluble, Broad Transmission Range

Used in FTIR spectroscopy

Sapphire

Very Durable and Good Transmission in IR

Used in IR Laser Systems, Spectroscopy, and Rugged Environmental Equipment

Silicon (Si)

Low Cost and Lightweight

Used in Spectroscopy, MWIR Laser Systems, THz Imaging

Sodium Chloride (NaCl)

Water Soluble, Low Cost, Excellent Transmission from 250nm to 16μm, Sensitive to Thermal Shock

Used in FTIR spectroscopy

Zinc Selenide (ZnSe)

Low Absorption, High Resistance to Thermal Shock

CO2 Laser Systems and Thermal Imaging

Zinc Sulfide (ZnS)

Excellent Transmission in Both Visible and IR, Harder and More Chemically Resistant than ZnSe

Used in Thermal Imaging

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
日韩欧美国产一区二区_国产精品国模大尺度视频_在线中文一区_久久综合九色99
欧美日韩日本国产亚洲在线| 国产一区二区三区久久精品| 亚洲一级在线观看| 日韩天天综合| 亚洲午夜羞羞片| 性亚洲最疯狂xxxx高清| 亚洲一区三区电影在线观看| 亚洲嫩草精品久久| 久久久久久网| 欧美日本成人| 国产午夜亚洲精品不卡| 91久久在线观看| 性欧美xxxx视频在线观看| 久久精品女人的天堂av| 欧美人与性动交cc0o| 国产一级精品aaaaa看| 亚洲靠逼com| 欧美影院精品一区| 欧美日产在线观看| 精品成人在线| 亚洲欧美国产va在线影院| 女人香蕉久久**毛片精品| 国产精品久久久久久五月尺| 亚洲国产日韩欧美一区二区三区| 亚洲女人天堂av| 欧美电影在线观看| 国外精品视频| 午夜精品婷婷| 欧美日韩在线高清| 最新日韩欧美| 麻豆精品网站| 国产在线不卡精品| 亚洲影院免费观看| 欧美日韩国产首页| 亚洲东热激情| 久久久av水蜜桃| 国产女主播一区二区| 亚洲欧美第一页| 国产精品久久久久7777婷婷| 一本色道精品久久一区二区三区| 欧美福利一区| 亚洲视频碰碰| 国产精品青草综合久久久久99| 亚洲少妇一区| 国产精品一区二区久久久久| 欧美尤物一区| 在线成人激情视频| 欧美风情在线| 亚洲视频在线视频| 国产精品自拍网站| 久久精品国产亚洲a| 国产在线观看91精品一区| 日韩午夜免费| 国产精品jizz在线观看美国| 亚洲一区二区三区午夜| 国产精品夜夜夜| 久久国产综合精品| 亚洲国产欧美日韩精品| 欧美精品在线免费播放| 亚洲午夜激情| 激情亚洲网站| 欧美精品网站| 午夜一区在线| 在线成人av| 欧美日韩精品在线观看| 午夜天堂精品久久久久| 韩国女主播一区二区三区| 免费国产一区二区| 一本色道88久久加勒比精品| 国产精品午夜春色av| 久久精品成人一区二区三区蜜臀| 亚洲第一精品夜夜躁人人爽| 欧美日韩一区二区欧美激情| 欧美中文字幕精品| 亚洲理论在线观看| 国产欧美一区二区三区视频| 欧美a级片网站| 午夜宅男久久久| 99riav1国产精品视频| 国产精品入口麻豆原神| 久久夜色精品亚洲噜噜国产mv | 国产精品a级| 午夜亚洲性色福利视频| 在线播放豆国产99亚洲| 欧美日韩一区二区三区四区在线观看| 亚洲在线视频| 亚洲伦理久久| 激情综合色综合久久综合| 欧美日韩综合视频| 麻豆成人在线| 久久精品国产一区二区电影 | 欧美日本精品一区二区三区| 香港久久久电影| 一本在线高清不卡dvd | 麻豆精品视频在线观看| 亚洲小视频在线| 99re6这里只有精品| 在线免费观看日韩欧美| 国产欧美精品xxxx另类| 欧美日韩在线免费| 欧美中在线观看| 亚洲永久精品大片| 在线综合亚洲欧美在线视频| 1000部国产精品成人观看| 国内精品免费在线观看| 国产精品一区二区三区观看| 欧美日韩欧美一区二区| 欧美日韩另类综合| 欧美乱人伦中文字幕在线| 欧美成人第一页| 欧美激情第三页| 欧美大片在线观看一区二区| 免费成人美女女| 欧美va天堂va视频va在线| 麻豆成人91精品二区三区| 久久亚洲综合色| 你懂的亚洲视频| 欧美大片免费看| 欧美高清在线视频| 欧美日本中文字幕| 欧美日韩免费一区二区三区| 欧美日韩一区二区三| 欧美日韩成人一区| 欧美日韩一区二区高清| 午夜亚洲一区| 久久久噜噜噜久久中文字幕色伊伊| 最新成人av在线| 亚洲欧洲综合| 韩国精品在线观看| 国产精品热久久久久夜色精品三区| 欧美刺激午夜性久久久久久久| 欧美激情在线狂野欧美精品| 欧美日韩精品二区第二页| 国产精品99一区二区| 欧美午夜激情小视频| 国产精品美女诱惑| 国产欧美不卡| 樱桃成人精品视频在线播放| 91久久精品一区二区别| 一本色道久久88综合亚洲精品ⅰ | 久久精品成人一区二区三区 | 国产日韩欧美黄色| 一区二区亚洲精品国产| 亚洲人成网站色ww在线| 亚洲天天影视| 美女久久网站| 欧美日韩国产在线播放| 国产麻豆9l精品三级站| 在线看片成人| 亚洲午夜成aⅴ人片| 久久久久亚洲综合| 国产精品va在线播放| 国产一区二区在线观看免费| 一区二区三区日韩欧美精品| 久久久www成人免费无遮挡大片| 欧美精品色综合| 国产日韩成人精品| 亚洲最新在线| 你懂的网址国产 欧美| 国产视频一区在线观看| 一区二区三区免费观看| 久久精品人人| 国产精品白丝av嫩草影院| 一区三区视频| 午夜亚洲精品| 欧美新色视频| 日韩视频二区| 老司机午夜精品| 国产午夜精品麻豆| 亚洲视频999| 欧美久久99| 亚洲国产精品va在线观看黑人| 亚洲调教视频在线观看| 欧美激情二区三区| 在线免费观看欧美| 久久精品中文字幕一区| 国产精品xxxxx| 洋洋av久久久久久久一区| 久久久噜噜噜久久人人看| 国产精品亚发布| 亚洲综合999| 国产精品久久久久永久免费观看 | 久久精品国产亚洲aⅴ| 欧美日韩在线播| 亚洲精品美女在线观看| 久久久www免费人成黑人精品| 国产视频丨精品|在线观看| 欧美在线你懂的| 国产一区二三区| 久久久水蜜桃av免费网站| 黄色成人小视频| 久久综合综合久久综合| 狠狠色狠狠色综合人人| 久久频这里精品99香蕉| 在线视频成人| 欧美日本一区二区三区| 亚洲欧美在线免费| 国外成人免费视频| 欧美**人妖| 亚洲影院在线|